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Abstract

This paper describes a modified genetic algorithm that works
directly on time-domain waveforms to produce genetically
evolved music, the formal structure of which is derived from
the evolutionary process. Genetic algorithms are briefly char-
acterized, a modified genetic algorithm that works directly on
waveforms is defined, and the compositional results are de-
scribed.

1 Introduction

1.1 Goals

My goal is to use genetic algorithms to produce a series
of electroacoustic pieces in which the ecological process of
evolution is transparent in the form of the piece. Although
I am using a machine learning technique, my goal is not to
get my machine to learn, to model the creative process, or to
create a general-use compositional tool.

Genetic algorithms are flexible enough to be applied to a
wide array of problems. The form that this application takes
will strongly reflect the designer’s intuitions about the domain
in question. For a review of the use of genetic algorithms in
music, see Burton and Vladimirova (Burton and Vladimirova
1999). At each stage of programming, choices must be made
that introduce designer bias into the system (Magnus 2003).
By embracing the inevitable design bias, I can create a pro-
cess that will explore new aesthetic possibilities.

1.2 Overview of Genetic Algorithms

Genetic algorithms use the biological metaphor of an evolv-
ing population to explore large-dimensional problem spaces
(Holland 1992). Each parameter of a solution is mapped onto
agene; a string of genes that contains the entire mapping of a
solution is called achromosome. Theerror of each solution is
measured. This is used to calculate afitness function, which

defines the probability each individual has of reproducing.
Fitter solutions have a higher probability of reproducing than
unfit solutions. Members of the population of potential solu-
tionssexually reproduce. The chromosomes of both parents
are cut at somecrossover pointand spliced together to form
a new individual. During reproduction, genes have a slight
probability of mutating, resulting in offspring that combine
traits of both parents but also contain new genetic material.
Because unfit individuals are unlikely to reproduce, harmful
mutations will be lost but beneficial mutations will become
increasingly prevalent. Over time, the entire population will
become increasingly fit until it finds some local minima in the
error function.

2 Algorithm

2.1 Representation

Genes are an abstract representation of some parameter
of the space; each individual is a chromosome. Here, chro-
mosomes are time-domain waveforms. Using instantaneous
samples as genes would be a bad idea: sexual reproduction
will introduce clicks; mutation will introduce noise. To allow
genetic operations to function meaningfully, I define a gene as
a segment of a waveform between two zero crossings (figure
1).

Figure 1: A waveform with dotted lines delineating genes.

An individual’s life-span is the duration of its playback.
Generations of output are concatenated onto a single audio
file that represents the evolutionary process over time. All
individuals in the population are multiplied by their fitness



and played simultaneously. Chromosomes can have arbitrary
lengths, with some fixed upper bound. When an individual
waveform dies (i.e. finishes playing in output), two parents
are selected from the population to produce an offspring to
take that individual’s place in the population.

2.2 Fitness

Fitness is based on similarity to a target waveform. An
individual’s error is calculated by summing the difference
between the desired amplitude and the actual amplitude for
each instantaneous sample in the waveform (figure 2). Al-
though the population will retain much of its original char-
acter, waveforms with similar lengths, frequencies, and am-
plitudes to the target waveform will become more prominent.
Biodiversity can be encouraged by incorporating general fea-
tures of the population into the fitness criteria. An individ-
ual’s fitness drops slightly each time it reproduces, decreasing
the chances that the offspring from a handful of individuals
will dominate the next generation.

b)
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Figure 2: a) A waveform from the population (solid line)
shown with the target waveform (dotted line). b) The wave-
form’s error is shown in grey.

2.3 Reproduction

Reproduction is the process by which a generation is de-
rived from the previous generation. Sexual reproduction is
carried out by splicing genetic material from two individuals
to produce one individual in the next generation. For each
offspring, two parents are selected from the population. The
probability that an individual will be selected as a parent is
based on its fitness. Each parent is divided at some randomly
selected crossover point. The location of the crossover point
is adjusted to make sure it falls on a zero crossing. The first
part of one parent is attached to the last part of the other par-
ent (figure 3). The crossover point can be different on each
parent, allowing offspring to have different lengths from their
parents. Offspring can potentially be as long as the combined
lengths of both parents.

b)

a)

c)

Figure 3: a) Two parent waveforms. The dotted line repre-
sents the randomly selected crossover point. b) The crossover
point adjusted to fall on gene boundaries (zero crossings).
c) The offspring waveform.

2.4 Mutation

Mutation introduces changes into the population. Muta-
tion occurs immediately after the parent genes are combined
to produce the offspring. Each gene has a slight probability
of mutating. When a gene is selected for mutation, it and a
string of genes that immediately follows it undergo the same
mutation.

A typical mutation function adds a random number to a
gene. An extension of this concept adjusts the amplitude of
a gene (figure 4 a). This is done by multiplying genes by
a number randomly selected between predetermined bounds.
A further extension raises genes to a power that is randomly
selected between predetermined bounds (figure 4 b). To pre-
vent the exponentiation from severely amplifying or attenuat-
ing the segment being mutated, each segment is normalized
after exponentiation so that it retains its original maximum
amplitude.

Because mutation is being applied to strings of genes,
rather than single genes, we can draw inspiration from the
types of errors that happen in actual gene transcription. Mu-
tation functions can reverse a string of genes (figure 5 a), re-
move a string of genes entirely (figure 5 b), repeat a string of
genes a random number of times (figure 5 c), or swap neigh-
boring strings of genes (figure 5 d).
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Figure 4: a) Mutation by amplification. b) Mutation by expo-
nentiation. The original waveform is represented by a dashed
line.
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Figure 5: Mutation operations: a) reverse. b) remove. c) re-
peat. d) swap. The original waveform is represented by a
dashed line.

3 Compositional Framework

In a constant environment, the algorithm described above
would eventually converge to a local minimum where all in-
dividuals would have roughly the same length as the target
waveform and would have acquired some of its amplitude
envelope and frequency characteristics. However, evolution
does not occur in a vacuum—the world is constantly chang-
ing. To create global compositional structure, I define aworld
in which the waveforms evolve.

For a given piece, the world will be characterized by some
number of locations. These locations may be mapped spa-
tially onto speakers. Theenvironmentat these locations will
initially be defined by some target waveform and some set
of mutation probabilities. Individuals within the population
will have some probability of migration. In this way, sounds
with new characteristics will enter each location, enhancing
biodiversity.

The world will be characterized by probability of change.
Both target waveform and mutation probabilities can change.
There are two sorts of changes that environments can un-
dergo. One is the slow drift that is seen in ice ages: these take
place over an enormous amount of time from the perspective
of individuals but happen many times over the evolution of
a species. This is simulated by slowly cross-fading between
two target waveforms. The other is the drastic change that re-
sults from catastrophic events, such as fire decimating a for-
est, causing it to be replaced by grassland. This is achieved
by replacing the target waveform with a completely different
waveform.

4 Results

4.1 General Description of Output

As evolution occurs, all of the waveforms in the popu-
lation are written to a single sound file with each individ-
ual waveform weighted by its fitness. This weighting causes
fit individuals to rise to prominence. Each time a waveform
ends, a new individual is generated from the population. The
new individual’s playback begins immediately at the end of
the waveform it replaces. Because the initial biodiversity is
very high, the beginning of the output file is a wash of textures
reminiscent of the timbres of the initial population. Within a
few generations, a few fit individuals dominate the mix, caus-
ing a sound in which particular features of the initial popu-
lation can be identified. At this point, the type of mutations
permitted significantly impacts the resulting sound.

As evolution progresses, qualities of the initial population
are preserved but are increasingly transformed through repro-
duction and mutation as the population takes on properties of



the target waveform. The similarity to the target waveform
depends on the type of mutation used, on the probability of
mutation, and on the amount of time over which evolution
occurs.

4.2 Effects of Mutation on Output

Each type of mutation has a characteristic sound that can
be readily heard if a population evolves with only that type of
mutation. Amplification changes the population in two ways.
The amplitude envelopes of individuals in the population tend
towards the amplitude envelope of the target environment.
Portions of individuals that are in phase with the waveform
will be amplified while portions that are out of phase will be
attenuated. Exponentiation is very similar to amplification in
its behavior, but it is much more invasive; it significantly al-
ters the timbre of the waveform.

The quality of the editing mutations depends largely on
the number of neighboring genes grouped for mutation. Ap-
plication to large segments of the waveform leaves the wave-
form more intact and recognizable but is less likely to add
significantly to the fitness of the population. Given a popula-
tion of individuals that are several seconds long, only one or
two lengthy mutations may propagate to future generations.
When very small segments of a waveform are mutated, the
sounds are not as recognizable (although they retain many
of their original properties), but they are more likely to have
a positive effect on fitness and be incorporated in the pop-
ulation. This demonstrates the known property of genetic
algorithms—high amounts of mutation tend to have a neg-
ative impact on the population while small amounts of muta-
tion over longer periods of time tend to contribute positively
to fitness.

When the biologically inspired mutations are applied to
perceptibly large segments of a waveform, the function itself
can be clearly identified. That is, the listener can tell that a
segment of a waveform has been reversed, removed, swapped
with another waveform, or repeated. When the grain size
is fairly small, portions of the waveform tend to get shuf-
fled around to more closely resemble the target waveform.
Portions of a waveform that have been reversed tend to re-
tain some quality that tells the listener that reversal is taking
place, but the only biologically inspired mutation that has a
significant fingerprint when applied to small segments of a
waveform is repetition. Repetition creates pitch out of noisy
segments of a waveform. When the grain size is small and
the probability of mutation is high, repetition is the most ef-
fective mutation at getting the population to denature itself to
the point where the target environment can be identified (e.g.
a listener unfamiliar with the target environment can identify
the environment as a bell when listening to the evolution of

a population of waveforms evolving with a bell as the target
environment).1

4.3 Achieving Musical Results

Higher probability of mutation leads to quicker conver-
gence towards the target environment. If the probability is
too high, however, the population can overshoot minima in
the error function and fall into regions of the space in which
all resemblance to the initial population is lost, the popula-
tion begins to soundless like the target waveform, and the
graininess resulting from overlapping mutations dominates.

Because the goal here is to make interesting music, rather
than attain a duplicate of some target sound file, I chose fairly
small mutation probabilities, and I chose to apply mutations
to fairly large segments of waveforms. This allows the sounds
to be quite recognizable, despite several minutes2 of evolu-
tion. The migration of individual waveforms from one envi-
ronment to another and the ability of environments to change
over time significantly contributes to the musicality of the
output. It was important to choose probabilities for both mi-
gration and environmental change that caused the trajectory
of the piece to change every couple of minutes. This kept the
piece from losing its biodiversity by staying in one place long
enough to lose all sounds but the offspring of a few individu-
als.

Over the course of a four-minute piece,3 sounds from the
initial population slowly evolve. Rhythms change gradually;
different sounds from the initial population rise to promi-
nence at different points; and the piece, although slowly chang-
ing, has clear directionality.

References
Burton, A. R. and T. Vladimirova (1999, Winter). Generation of

musical sequences with genetic technique.Computer Music
Journal 23(4), 59–73.

Holland, J. H. (1992).Adaptation in natural and artificial sys-
tems : an introductory analysis with applications to biology,
control, and artificial intelligence. Cambridge, Mass.: MIT
Press.

Magnus, C. (2003). Evolving waveforms with genetic algo-
rithms. Master’s thesis, University of California, San Diego.
http://crca.ucsd.edu/∼cmagnus/research.html.

1See http://crca.ucsd.edu/∼cmagnus/ga−results.html for sample output.
2Several minutes of output—this is a machine learning algorithm so get-

ting several minutes of output takes several hours of computation.
3http://crca.ucsd.edu/∼cmagnus/audio/run5.mp3


