
Aesthetics, Score Generation, and Sonification in a Game Piece

Cristyn Magnus
CRCA, Cal(IT)2, Department of Music, University of California, San Diego

La Jolla, Ca. 92093-0326
cmagnus@ucsd.edu

Abstract

This paper explores the motivation behind vs. computer, a
game piece for computer and solo percussion. It discusses the
compositional decisions that were required to meet the aims
of the piece. It also describes the technical implementation
of the game itself, sonification of aspects of the game, and
automatic score generation for variable instrumentation.

1 Introduction
Vs. computer is a game piece for solo percussion and

computer. It grew out of an interest in developing interactive
pieces with emergent formal properties. This interest sprang
from a joint background in cognitive science and music.

When I began thinking about vs. computer, I had just
completed a piece for percussion and two vocalists. That
piece, Pantomime Grasshopper, explored the changing rela-
tionships between performers as a basis for compositional
structure. I wanted to explore similar dynamics in a per-
former versus computer situation. By removing other people,
it becomes a situation of performer versus self—success is
measured by personal satisfaction with the attempt; usually
against previous attempts.

2 Game
My first decision was that the piece needed to be robust.

I needed to design a sonic interface that would run without a
second person watching the computer to make sure the patch
worked. The moves also needed to be musically meaningful,
since I wanted formal aspects of the piece to rise out of the act
of game-playing. With these considerations in mind, I chose
two reliably detectable dimensions: loudness and speed. The
binary combination of loudness and speed give the game four
possible moves: fast and loud, fast and soft, slow and loud,
slow and soft.

I worked extensively with percussionist Robert Esler to
find a viable game. We tried a four-move strategy game be-

fore settling on an arcade-style game. The four moves are
mapped onto up, down, left, and right on a two-dimensional
game field.

The game itself is very simple. The performer’s task is
to use his/her interpretation of the algorithmically generated
score to move a green square around the game-field, picking
up black squares before they disappear. The performer gets a
point for each square he/she picks up and the computer gets
a point for each square that fades out before the performer
can pick it up. When squares are picked up or face out, new
squares replace them at random locations. In a typical game,
about ten squares are placed each minute.

Figure 1: The game-field.

Since the piece is substantially less interesting if the per-
former can win too easily or can’t win at all, he/she can adjust
the difficulty to reflect his/her current skill. The game should
pose sufficient challenge that the performer can win occasion-
ally with significant effort. The default difficulty sets the life
of the black squares to fourty-six moves; this is the minimum
number of moves it takes to cross the game-field diagonally.

Moving works like a switch joystick rather than a variable
resistance joystick. It doesn’t matter how fast or slow the
performer plays, the green square moves across the screen at



the same rate. No amount of louder or softer, for instance,
will change the rate at which the green square moves. Even if
it did, this would be irrelevant, since the life-span of a black
square is counted in moves, not in time.

As soon as the computer detects a different movement
direction, it will change direction regardless of when it was
scheduled to repeat its last move. Since speed is calculated
based on the time between notes, there can be a significant
lag in determining a transition from fast to slow. It’s a bit like
driving a boat. I considered re-coding the slowness-detector
to change direction as soon as a pause crossed a threshold, but
I liked the notion of slowness really having a tangible effect
instead of merely being another direction.

3 Score Generation
Another disideratum was instrumental flexibility. The ex-

act instrumentation is unspecified for two reasons. First, the
practice among percussionists is to modify instrumentation as
part of the interpreting a piece (Hennies 2002), (Esler 2006),
(Manzanilla 2004). It makes more sense for me to describe
the features I want highlighted than to ask for specific instru-
ments without explaining my motivation. Second, I want to
allow versatility in performance. This piece is designed to
work with instruments on hand. It can expand to an array of
larger instruments at home or map onto a small setup on the
road.

My thinking here was heavily influenced by Ivan Man-
zanilla’s project of coming up with a versatile set of instru-
ments to specialize on and to commission pieces for that setup.
This would allow him to specialize as non-percussion instru-
mentalists do rather than use a different setup for each piece.
Moreover, I wanted the piece to be playable on any percus-
sionist’s preferred improvisation setup. Vs. computer allows
anywhere from three to twenty-two instruments. Although
performers will probably tend towards somewhere in the 7±2
(Miller 1968) range for individual instruments, this leaves
open the possibility of playing on the piece on a single key-
board instrument and mapping the keys to instruments.

Since the moves are made by playing the score fast or
slow, there is no way of knowing how much notated material
will be required for a given game. If I had chosen to use a
fixed score, there would have been two options: either allow
the score to loop or make it so long that the performer could
never conceivably reach the end. A looping score would have
to lack direction so that looping would not disrupt the struc-
ture, or I would have to accept the possibility of the piece
ending at an awkward structural point. Generating a score
so long that it would never be played in its entirety would
be a ludicrous waste of time, both for the composer and the
performer learning the piece. The problem would be com-

pounded because I would have to create scores for all pos-
sible numbers of instruments or sacrifice the goal of flexible
instrumentation.

To acommodate the requirement for instrumental flexi-
bility and length variability, the vs. computer score is gen-
erated algorithmically. First, a seed score is generated by
nested markov processes. Then, a developmental algorithm
produces new material by sampling and modifying earlier
parts of the score.

The seed score is generated hierarchically. First, the num-
ber of phrases is determined. Gestures are ordered within
phrases by a markov process. Finally, each gesture is itself
algorithmically defined.

There are five kinds of gestures. Since tempo is one of
the dimensions of game control, I wanted each gesture to ar-
ticulate time in a different way. The two extremes are out-
lined by single-note gestures. The longest space between
notes is twenty times the length of the shortest space be-
tween notes. The other three gestures are multi-note gestures.
First, a “melodic” gesture of several notes whose randomly-
selected length is twice the length of the shortest possible
note-range. Second, an n-tuplet gesture plays several notes
of comparable length that are of equal length. Third, an en-
tire accelerando gesture lasts as long as the longest possible
notes, but its constituent notes move from rather long to ex-
tremely short (or vice versa) over the course of the note.

In both single-note and multi-note gestures, notes are as-
signed instruments and loudness by markov chains. The in-
strument and loudness markov chains are independent. Each
gesture-type has a unique probability table. The gesture’s
probability table determines the first note of the gesture based
on the last note of the previous gesture, even if the previous
gesture is of a different gesture-type. In order to apply instru-
ment choice to a variable number of instruments, the prob-
abilities are defined in terms of large proximity categories
rather than a different probability for each instrument. Each
note has some probability of doing one of four things in re-
lation to the previous instrument. It can repeat, pick a neigh-
bor, pick a near (non-neighboring) instrument, or pick a far
instrument.

The seed material is developed by a process of sampling
and altering earlier parts of the notated material. Sampling
accounts for the hierarchical structure, but is not completely
subject to it. Preference is given first to beginning and end-
ing at phrase boundaries, then gesture boundaries, then note
boundaries. There is a slight possibility that a sample will in-
terrupt a note. The sample is appended to the end of the score
with randomly selected notes altered in length, instrument, or
loudness.

The developmental process has two effects. First, each
time a portion of notated material is sampled, its odds of be-



Figure 2: A few lines of sample score generated for seven instruments.

ing sampled again are higher relative to unsampled material.
This is because samples come can come from any existing
material, not just the seed material. This has the effect of ele-
vating some materials to recurring, developing themes, while
other materials become subservient. Second, phrase and ges-
ture boundaries are priviledged but it is possible to have sam-
ples that interrupt notes or gestures and define them as new
phrases. This means the material will become increasingly
fragmented over the course of the piece. The combined ef-
fect is like reexamining a memory: examining it over and
over, obsessing on some details and forgetting others until
they achieve a signification they did not originally posess.

4 Sonification
The game is not visually projected for the audience, since

this would be distracting. Instead, the state of the game is re-
flected in electronic processing. Each time the performer gets
a point, a sound that rapidly increases in pitch is played; each
time the computer gets a point, a sound that rapidly decreases
in pitch is played.

The point distribution is reflected in the amount of pro-
cessing the performer’s sound undergoes. If the performer
is well ahead of the computer, subtle effects like reverb are
applied to his/her sound. As the computer does better, the
amount of reverb will increase. Then increasingly intrusive

effects are added; first pitch shift, then delay (again, of in-
creasing intensity). If the performer loses, the settings on
the processing will become sufficiently extreme that the per-
former’s sound will be swallowed up in gritty, aggressive
sounds.

If the performer wins, the computer’s processing will be
completely turned off. The performer will then continue to
play the next portion of the score, free from the constraints re-
quired to make moves in the game. He/She should play until
he/she reaches a satisfying gesture on which to end the piece.
Unless the game ended at the end of a page, he/she should find
an end point on the current page. Otherwise, he/she should
end somewhere on the next page.

The time left in the game also affects processing. There
is a multiplier that reflects the amount of time left. There
is always less processing early in the game, and processing
reflects the point distribution with increasing accuracy over
the course of the game.

The game-field itself is projected spatially onto the audi-
ence. The processed sounds are spatialized to reflect the lo-
cation of the green square. The sounds made by the computer
getting points are spatially located analogously to the loca-
tion of the black squares that just faded out. For flexibility,
the piece works with 2, 4, 6, or 8 speakers. Note, however,
that a stereo projection will lose the vertical dimension of the
game.



5 Interaction between the game and no-
tation

The form of the piece emerges from the interaction be-
tween the performer, the notation, and the game. This piece
is a form of algorithmic composition in which the algorithm
explicitly requires distributed cognition (Hutchins 1996). In
this case, the algorithm is distributed between the computer
and the performer—each is following the rules for its rôle in
the game, but the outcome is music. It is not structured impro-
visation, since a performer playing the game in good faith will
not be improvising. Rather, he/she will be making the most
strategic choice possible at any given moment. As Xenakis
notes about algorithmic composition: “In the long run [it] will
follow the laws of probability and the performances will be
statistically identical with each other” (Xenakis 1992). That
is, because of the constraints provided by the game, roughly
the same form will emerge at each performance.

The form of the piece will always be blocks of juxtaposed
material that are produced by the slow/fast soft/loud binary
pairs. Because the game-field does not wrap around, the per-
former can never get away with avoiding a particular way of
playing. Because new tokens are respawned whenever old
tokens are removed from the game, there are always new rea-
sons for the player to keep moving and changing direction.
The electronic portion of the piece will follow a more varied
trajectory, depending on the difficulty the game is set to. But
the general form will usually emerge in which processing be-
gins gently, then increases in degree, varies in either direction
over the central portion of the piece, then either stops (if the
performer wins) or takes over (if the computer wins).

The difficulty in the game lies in interpreting the score
so that the computer understands the performer’s moves. The
score deliberately contains extremes to create tension between
the notation and the move the performer is trying to make.
To play slowly, the performer must play slowly enough for
the densest passage is perceived as slow; to play quickly,
the performer must play fast enough for the sparsest pas-
sage to be perceived as fast. The performer isn’t allowed
to change his/her speed and loudness mappings once he/she
has chosen to move in a particular direction. For instance,
he/she shouldn’t compensate for dense passages by playing a
ritardando. The performer either needs to explicitly change
his/her movement direction and play slower next time he/she
attempts to move or accept any incidental direction change
the computer might perceive and continue with the same map-
ping. The performer is allowed, however, to fool the com-
puter by playing anything that is legal under the notation. For
example, if the performer finds that a sustained attack on a
particular instrument is often picked up as multiple, fast at-
tacks, he/she could play a sustain during an extremely sparse

section of notation to trick the computer into thinking he/she
is playing faster than the notation suggests.

6 Acknowledgements
Vs. computer was written in collaboration with Robert

Esler, who is not only an extremely talented, committed, and
insightful performer, but also infinitely patient in the process
of developing the technological aspects of the piece. I also
owe a great deal to P.D. Magnus, off of whom I bounced
most of my ideas and from whom I got a great deal of useful
feedback. I would also like to thank Philppe Manoury and
Miller Puckette for comments while I was writing the piece.
Vs. computer was implemented using Miller Puckette’s PD
software (Puckette 06).

References
Esler, R. (2005–2006). Personal communication. http://

robertesler.com.
Hennies, N. (2002). Personal communication.
Hutchins, E. (1996). Cognition in the Wild. Cambridge Mas-

sachussets: MIT Press.
Manzanilla, I. (2004). Programming and performance in con-

temporary percussion music : a performer[’]s exploration of
how, why, and when. Ph. D. thesis, University of California,
San Diego.

Miller, G. A. (1968). The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
In R. N. Haber (Ed.), Contemporary theory and research in
visual perception., pp. 187–202. New York: Holt, Rinehart,
& Winston.

Puckette, M. (downloaded 2005–06). Pd–0.39–0 and pd–0.39–2.
http://crca.ucsd.edu/∼msp/software.html.

Xenakis, I. (1992). Formalized Music: Thought and Mathematics
in Music. Hillsdale, NY: Pendragon Press.


